
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 971
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Comparative Stack Space Performance
Analysis Of O(nlogn) Sorting Algorithms

Abhinav Yadav, Dr. Sanjeev Bansal

Abstract— Sorting Algorithms are of great significance in various areas and is therefore a fundamental research topic in Computer
Science. These algorithms pave the way for other operations (e.g. insert, delete, search) to execute faster on some set of records.
O(nlogn) algorithms have been experimented with randomly generated records. Based on the experiments and analysis, we have
summarized the result statistically and analytically in this paper. It has been analyzed that on the basis of the nature of input choosing
a specific sort algorithm sometimes with some variation is of vital importance, change in the nature of input leads to huge difference in
the execution time and memory consumption of these algorithms.

Index Terms— Sorting, Quick Sort, Merge Sort, Heap Sort, nlogn, Stack Space.

—————————— ——————————

1 INTRODUCTION
In order to perform the operations on the data efficiently
it is important that the data must be in an order, either
ascending or descending. Sorting is a procedure that
orders data and thus enhances the efficiency of other
operations to be performed on the data. We have
performed experiments on three sorting algorithms for
analytical study: Quick Sort, Merge Sort, and Heap Sort.
All the three algorithms belong to O(nlogn) category as
there execution time is of order O(nlogn). For
experiments randomly generated large data sets have
been used. Three types of input sequence were used:
Unsorted, Sorted, Reverse Sorted. We have focused the
analysis on the three factors: Time Complexity, Space
Complexity and Maximum Stack Utilization at a
particular time. Output produced by all the algorithms
(sorted order) is an ascending sequence, and dynamic
memory allocation has been used.

2 THE THREE SORTING ALGORITHMS
The three sort algorithms that were experimented with
are Quick Sort, Merge Sort and Heap Sort. For large data
set these algorithms are very popular and efficient. These
algorithms are heavily used with some variations in order
to handle some exceptional worst case situations.
Algorithms used for study are defined first in this section.
Performances and results of the algorithms have been
summarized in the next section.

2.1 Quick Sort
The recursive quick sort procedure implemented in C
language for experiments is from [1]. The partition

procedure used is Hoare’s Partition [1]. The time
complexity of this Quick Sort is O(nlogn) except when the
input sequence is sorted or reverse sorted i.e. the worst
case. In worst case the algorithm requires ∑ i = O(n2)n−1

i=0
comparisons.
If algorithm partitions the input sequence in two equal
parts, best case occurs with the running time complexity
of O(nlogn) which follows equation(1) :

𝐓(𝐧) = �
𝚯(𝟏), 𝐢𝐟 𝐧 ≤ 𝟏
𝟐𝐓�𝐧

𝟐
�+ 𝚯(𝐧) 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 (1)

When the input sequence is sorted or reverse sorted the
algorithm partitions the input sequence in two parts such
that one part contains one element and the other contains
n-1 elements and the algorithm follows equation (2)
which gives the time complexity of order O(n2).

𝐓(𝐧) = 𝐓(𝐧 − 𝟏) + 𝚯(𝐧) (2)

When unbalaced partion is made by the algorithm e.g.
equation (3) , (4) the running time complexity of
algorithm is O(nlogn).

𝐓(𝐧) = �
𝐎(𝟏), 𝐢𝐟 𝐧 ≤ 𝟏
𝐓�𝐧

𝟑
�+ 𝐓�𝟐𝐧

𝟑
�+ 𝚯(𝐧) 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 (3)

𝐓(𝐧) = �
𝐎(𝟏), 𝐢𝐟 𝐧 ≤ 𝟏
𝐓�𝐧

𝟒
�+ 𝐓�𝟑𝐧

𝟒
�+ 𝚯(𝐧) 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 (4)

2.2 Merge Sort
The Merge Sort algorithm used for experiment is from [2].
The algorithm divides the array in two equal parts, sorts
both the parts recursively and then using Merge
procedure merges both the sub arrays.
This algorithm Merge Sort follows equation (1) and its

————————————————
• Abhinav Yadav is currently pursuing masters degree program in Computer

Science & Engineering, Amity University, India.
• E-mail: abhinavanihba@gmail.com
• Prof. (Dr.) Sanjeev Bansal currently holds position of Director –Amity

Business School, Amity University, India.
• E-mail: sbansal1@amity.edu

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 972
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

running time complexity is O(nlogn).

2.3 Heap Sort
The Heap Sort procedure is from [2][3]. The Heap Sort
algorithm has a running time complexity of O(nlogn).
The recursive Max_Heapify procedure of the algorithm is
used to maintain the Max Heap property of the array
visualizing it as a tree i.e. each child of a node is lesser
than the node itself. Here children of ith node are (2*i)th
node and (2*i+1)th node. There are n-1 calls to the
procedure Max_Heapify in Heap_Sort procedure. All n-1
calls to Max_Heapify in Heap_Sort procedure takes
O(logn) time. The procedure Max_Heapify follows
equation (5).

𝐓(𝐧) ≤ 𝐓�𝟐𝐧
𝟑
� + 𝚯(𝟏) (5)

3 EXPERIMENTAL STUDY
Performance measurements have been done on Intel Core
i5 CPU @ 2.40 GHz. and 3.42 GB RAM, with Windows XP
Operating System installed. GCC compiler is used for
executing programs. For running time calculations time
functions are used and data generation is done using
random function.

3.1 Experimental Results
 When the input given to the algorithms is a random
sequence and the input scale varied from 10,00,000 to
1,00,00,000 time taken by the algorithms to execute is
demonstrated by table 1 and figure 1.

TABLE 1

TIME COSTS OF ALGORITHMS UNDER UNORDERED SEQUENCE

No. Of Records Quick Sort Merge Sort Heap Sort

1000000 .218 0.593 0.562

2000000 .438 1.359 1.281

3000000 .687 1.906 2.093

4000000 .937 2.578 2.968

5000000 1.172 3.281 3.891

6000000 1.438 3.953 4.828

7000000 1.703 4.656 5.781

8000000 1.938 5.328 6.797

9000000 2.203 6.079 7.812

10000000 2.469 6.766 8.828

Figure 1. Time Cost comparison of algorithms under unordered
sequence

For unordered sequence figure 1 shows that Quick Sort
from the very beginning i.e. for 1000000 records
outperformed the other two algorithms and with the
increase in no. Of records the running time difference
between Quick Sort and the other two increased heavily.
Up to 3000000 no. Of records the difference between time
costs for Merge Sort and Heap Sort was not much but as
the no. Of records became larger Merge Sort showed
more efficiency.
When the input sequence is sorted the time costs of the
three algorithms are demonstrated by table 2 and figure
2.

TABLE 2

TIME COSTS OF ALGORITHMS UNDER SORTED SEQUENCE

No. Of Records Quick Sort Merge Sort Heap Sort

100000 0.187 0.000 0.000

200000 0.485 0.015 0.015

300000 1.031 0.015 0.031

400000 1.734 0.032 0.031

500000 2.688 0.047 0.047

600000 3.766 0.063 0.047

700000 5.141 0.063 0.062

800000 6.719 0.078 0.078

900000 8.609 0.093 0.093

1000000 10.469 0.094 0.094

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 973
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure 2. Time Costs comparison of algorithms under sorted
sequence

As table 2 and figure 2 depicts when the input sequence is
sorted from it is the Quick Sort that becomes slow sort.
Merge Sort and Heap Sort took almost same time to
execute on the same input size. Where Merge Sort and
Heap Sort took less than 1 second to execute on the input
size of 1000000 records, Quick Sort took more than 1
second to execute on the input size of 300000. So it is
obvious that using Quick Sort for sorting a sorted input
sequence could be troublesome.
When the input sequence is in reverse sorted order the
time costs of the three algorithms are demonstrated by
table 3 and figure 3.

TABLE 3

TIME COSTS OF ALGORITHMS UNDER REVERSE SORTED
SEQUENCE

No. Of Records Quick Sort Merge Sort Heap Sort

100000 0.203 0.000 0.000

200000 0.469 0.015 0.015

300000 1.031 0.031 0.016

400000 1.719 0.032 0.032

500000 2.672 0.047 0.032

600000 3.813 0.063 0.047

700000 5.125 0.063 0.062

800000 6.766 0.078 0.063

900000 8.469 0.078 0.078

1000000 10.360 0.109 0.094

Figure 3. Time Costs comparison of algorithms under reverse sorted
sequence

When the input sequence was reverse sorted the running
time costs of the three algorithms were almost same as
under the sorted sequence. Quick Sort was the worst and
has quadratic growth as shown in figure 3. The difference
between the running time costs of Merge Sort and Heap
Sort was very less.

3.2 Performance Analysis
In order to analyse the performance of the three sorting
algorithms, some factors have been taken into account.
Firstly, time complexity i.e. time taken by an algorithm to
execute. With the increase in the size of input running
time also increases. So, if the size of input is n then we can
have a function f(n) that determines the running time of
algorithm. Secondly, space complexity which is all about
the memory used by the algorithm to perform the task.
Memory is an important aspect in order to analyze an
algorithm because of its limitedness. Space Complexity
can also be defined as a function of the size of input.
Thirdly, maximum stack space consumed by an
algorithm at a particular time. Because all the three
algorithms are recursive they consume stack space for
storing the information about the recursive procedure as
they go deep in to recursion. Although the factor, stack
space is a part of the memory factor yet it is important to
analyze this separately because of memory constraints on
compiler.
Quick Sort has O(nlogn) time complexity in best and
average case. Space complexity is O(logn) in best and
average case and that is due to stack space usage of the
algorithm. In worst case Quick Sort has a time complexity
of O(n2). Space Complexity in worst case could be O(n).
Either for sorted sequence or reverse sorted sequence the
stack depth becomes O(n). The reason behind is serving
the request of recursion first for the longer sub array.
Here it is important to implement the recursive procedure
carefully using tail recursion and first serving the request
of sorting the smaller sub array[4][5][6].
Merge Sort has O(nlogn) time complexity in best, average

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 974
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

and worst case. Space Complexity of Merge Sort is of
order O(n) in all the cases, where as the stack space
consumed is of order O(logn) because it always divides
the array into two parts. In average case Quick Sort has
an edge over Merge Sort but in the worst case scenario
Merge Sort outperforms Quick Sort.
Heap Sort has O(nlogn) time complexity in best, average
and worst case same as with the Merge Sort. Space
Complexity of Heap Sort is O(n) in all the cases where as
the maximum stack space consumption at a particular

time is of order O(logn).

4 CONCLUSION
On the basis of the analysis above we could have a
summarized result table below. In the table 4 below for
each algorithm time complexity, space complexity and
maximum stack space consumed are listed for best,
average and worst case.

TABLE 4

COMPARISON OF SORTING ALGORITHMS ON THE BASIS OF VARIOUS FACTORS

Algorithms Best Case Average Case Worst Case

Quick

Time O(nlogn)

Space O(logn)

Stack O(logn)

Time O(nlogn)

Space O(logn)

Stack O(logn)

Time O(n2).

Space O(n)

Stack O(n)

Merge

Time O(nlogn)

Space O(n)

Stack O(logn)

Time O(nlogn)

Space O(n)

Stack O(logn)

Time O(nlogn)

Space O(n)

Stack O(logn)

Heap

Time O(nlogn)

Space O(n)

Stack O(logn)

Time O(nlogn)

Space O(n)

Stack O(logn)

Time O(nlogn)

Space O(n)

Stack O(logn)

Quick Sort and Merge Sort operate on the records in a
sequence and therefore they make efficient use of cache,
whereas Heap Sort does not show cache efficiency.
Whatever, for either sorted or reverse sorted sequence of
input Merge or Heap is obviously the necessary choice,
but when the real use of sorting operation comes in
scenario i.e. when an unsorted sequence is to be sorted
Quick Sort is the best option so far to choose over the
other two algorithms.

REFERENCES
[1] C. A. R. Hoare, (1961), “Algorithm 63, Partition” and “Algorithm 64,

Quicksort”, Communications of the ACM, Vol. 4, p. 321.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, (2009),

Introduction to Algorithms, Second Edition. MIT Press and McGraw-
Hill, 2001.

[3] J. W. J. Williams, (1964), “Algorithm 132 (Heapsort)”. Communications
of the ACM, 7:347-348.

[4] Donald Knuth, (1997), The Art of Computer Programming, Volume
3: Sorting and Searching, Third Edition. Addison-Wesley.

[5] Niklaus Wirth, (1976), (in English). Algorithms + Data Structures =
Programs, Prentice-Hall.

[6] R. Sedgewick, (1978), “Implementing Quicksort Programs”,
Communications of the ACM 21, 10, 847–857.

[7] R. Sedgewick, (1997), Algorithms in C, Parts 1-4: Fundamentals, Data
Structures, Sorting, Searching, 3rd Edition, Addison-Wesley.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 975
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ijser.org/

	1 Introduction
	2 The Three Sorting Algorithms
	2.1 Quick Sort
	2.2 Merge Sort
	2.3 Heap Sort

	3 Experimental Study
	3.1 Experimental Results
	3.2 Performance Analysis

	4 Conclusion
	References

